Yearly preventive maintenance scheduling of generating units in a restructured power system is one of the most important problems that have to be solved in modern power systems. In this… Click to show full abstract
Yearly preventive maintenance scheduling of generating units in a restructured power system is one of the most important problems that have to be solved in modern power systems. In this paper, a bilevel approach is used for modelling of the preventive maintenance scheduling problem. The upper level of this bilevel problem represents the revenue function of power units owned by a generation company (GENCO), whereas the lower-level problem represents the market-clearing process and is usually called the independent system operator (ISO) level. This bilevel problem is then formulated as a mathematical program with equilibrium constraints (MPEC) using the primal–dual theorem, which converts the problem into a single-level mixed-integer non-linear optimization problem that can be solved using programming software. Various case studies are conducted using the IEEE reliability test system (RTS) and the obtained results are compared.
               
Click one of the above tabs to view related content.