This paper presents an integrated nonlinear robust adaptive controller with uncertainty observer for active front wheel steering system and direct yaw moment control system. First, an integrated vehicle chassis control… Click to show full abstract
This paper presents an integrated nonlinear robust adaptive controller with uncertainty observer for active front wheel steering system and direct yaw moment control system. First, an integrated vehicle chassis control model is established as the nominal model with the additive and multiplicative uncertainties of the system. Secondly, an integrated nonlinear robust adaptive control law with the additive uncertainty observer is designed via Lyapunov stability theory to calculate the corrective yaw moment, and an adaptive law is designed based on projection correction method to online estimate and compensate the multiplicative uncertainty of the system. Then, the constrained optimal allocation problem of the corrective yaw moment is transformed into the nonlinear optimization problem, and the sequential quadratic programming method is used to solve the nonlinear optimization problem to coordinate active front wheel steering system and direct yaw moment control system. Finally, the performance of the proposed integrated nonlinear robust adaptive controller is verified via vehicle dynamics simulation software.
               
Click one of the above tabs to view related content.