LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonsingular fast terminal sliding mode control based on neural network with adaptive robust term for robotic manipulators with actuators

Photo by nhoizey from unsplash

For accurate trajectory tracking of robotic manipulators with actuators, a novel nonsingular fast terminal sliding mode control (NFTSMC) strategy based on radial basis function neural network (RBFNN) is put forward… Click to show full abstract

For accurate trajectory tracking of robotic manipulators with actuators, a novel nonsingular fast terminal sliding mode control (NFTSMC) strategy based on radial basis function neural network (RBFNN) is put forward and investigated in this paper. Because of the existence of nonsingular fast terminal sliding mode (NFTSM) manifold, the controller possesses high precision and fast convergence. Considering that it is difficult to obtain accurate model parameters owing to modeling errors or external disturbances, RBFNN is used to approximate the nonlinear uncertainties due to its simple structure and great generalization ability. A new adaptive law is designed to adjust RBFNN. In order to compensate the estimation errors and suppress other unstable factors, a robust term is introduced. A new adaptive law is developed to flexibly adjust the robust term. Then, Lyapunov theory is applied to prove the system stability and finite-time convergence. Finally, a small-sized industrial robotic manipulator Epson LS3-401S with its first two joints is taken as the simulation plant, and several simulations between the proposed controller and the other two controllers are performed. External disturbances and other two conditions are considered to simulate the real environment, and the corresponding results verify the effectiveness and superiority of the proposed controller.

Keywords: fast terminal; sliding mode; nonsingular fast; robust term; terminal sliding

Journal Title: Transactions of the Institute of Measurement and Control
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.