LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A soft-sensing method for product quality monitoring based on particle swarm optimization deep belief networks

Photo from wikipedia

A novel soft-sensing method for quality parameters of aviation kerosene in atmospheric distillation column based on least absolute shrinkage and selection operator and particle swarm optimization deep belief network (LASSO-PSO-DBN)… Click to show full abstract

A novel soft-sensing method for quality parameters of aviation kerosene in atmospheric distillation column based on least absolute shrinkage and selection operator and particle swarm optimization deep belief network (LASSO-PSO-DBN) is proposed. First, to reduce the dimension of the input variables, the least absolute shrinkage and selection operator (LASSO) algorithm is used to select the input variables that are irrelevant to the soft sensor of aviation kerosene quality parameters. Then, to improve the generalization of soft sensor model, a deep learning algorithm, deep belief network (DBN), is proposed for soft sensing of aviation kerosene quality parameters. Considering that the structure characteristics and parameters of DBN algorithm have a great impact on the learning and prediction results, the parameters of DBN are optimized based on particle swarm optimization (PSO) algorithm. The benchmark data sets and the industrial atmospheric distillation column data are used for simulation analysis and evaluation of the soft-sensing performance. The simulation results show that the novel proposed algorithm can effectively reduce the dimension of the input variables and simplify the structure of the soft sensor model. It also has good generalization ability and the predicted value is in good agreement with the actual measured value.

Keywords: quality; swarm optimization; particle swarm; soft sensing; deep belief

Journal Title: Transactions of the Institute of Measurement and Control
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.