Multilevel modeling is an approach that can be used to summarize single-case experimental design (SCED) data. Multilevel models were developed to analyze hierarchical structured data with units at a lower… Click to show full abstract
Multilevel modeling is an approach that can be used to summarize single-case experimental design (SCED) data. Multilevel models were developed to analyze hierarchical structured data with units at a lower level nested within higher level units. SCEDs use time series data collected from multiple cases (or subjects) within a study that allow researchers to investigate intervention effectiveness at the individual level and also to investigate how these individual intervention effects change over time. There is an increased interest in the field regarding how SCEDs can be used to establish an evidence base for interventions by synthesizing data from a series of intervention studies. Although using multilevel models to meta-analyze SCED studies is promising, application is often hampered by being potentially excessively technical. First, this article provides an accessible description and overview of the potential of multilevel meta-analysis to combine SCED data. Second, a summary of the methodological evidence on the performance of multilevel models for meta-analysis is provided, which is useful given that such evidence is currently scattered over multiple technical articles in the literature. Third, the actual steps to perform a multilevel meta-analysis are outlined in a brief practical guide. Fourth, a suggestion for integrating the quantitative results with a visual representation is provided.
               
Click one of the above tabs to view related content.