LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multidimensional Computerized Adaptive Testing Using Non-Compensatory Item Response Theory Models

Photo from wikipedia

Current use of multidimensional computerized adaptive testing (MCAT) has been developed in conjunction with compensatory multidimensional item response theory (MIRT) models rather than with non-compensatory ones. In recognition of the… Click to show full abstract

Current use of multidimensional computerized adaptive testing (MCAT) has been developed in conjunction with compensatory multidimensional item response theory (MIRT) models rather than with non-compensatory ones. In recognition of the usefulness of MCAT and the complications associated with non-compensatory data, this study aimed to develop MCAT algorithms using non-compensatory MIRT models and to evaluate their performance. For the purpose of the study, three item selection methods were adapted and compared, namely, the Fisher information method, the mutual information method, and the Kullback–Leibler information method. The results of a series of simulations showed that the Fisher information and mutual information methods performed similarly, and both outperformed the Kullback–Leibler information method. In addition, it was found that the more stringent the termination criterion and the higher the correlation between the latent traits, the higher the resulting measurement precision and test reliability. Test reliability was very similar across the dimensions, regardless of the correlation between the latent traits and termination criterion. On average, the difficulties of the administered items were found to be at a lower level than the examinees’ abilities, which shed light on item bank construction for non-compensatory items.

Keywords: information; adaptive testing; non compensatory; item; computerized adaptive; multidimensional computerized

Journal Title: Applied Psychological Measurement
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.