LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Standard Errors of Kernel Equating: Accounting for Bandwidth Estimation

Photo from wikipedia

In standardized testing, equating is used to ensure comparability of test scores across multiple test administrations. One equipercentile observed-score equating method is kernel equating, where an essential step is to… Click to show full abstract

In standardized testing, equating is used to ensure comparability of test scores across multiple test administrations. One equipercentile observed-score equating method is kernel equating, where an essential step is to obtain continuous approximations to the discrete score distributions by applying a kernel with a smoothing bandwidth parameter. When estimating the bandwidth, additional variability is introduced which is currently not accounted for when calculating the standard errors of equating. This poses a threat to the accuracy of the standard errors of equating. In this study, the asymptotic variance of the bandwidth parameter estimator is derived and a modified method for calculating the standard error of equating that accounts for the bandwidth estimation variability is introduced for the equivalent groups design. A simulation study is used to verify the derivations and confirm the accuracy of the modified method across several sample sizes and test lengths as compared to the existing method and the Monte Carlo standard error of equating estimates. The results show that the modified standard errors of equating are accurate under the considered conditions. Furthermore, the modified and the existing methods produce similar results which suggest that the bandwidth variability impact on the standard error of equating is minimal.

Keywords: bandwidth estimation; standard error; standard errors; kernel equating; errors equating

Journal Title: Applied Psychological Measurement
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.