LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First-Order Learning Models With the GDINA: Estimation With the EM Algorithm and Applications

Photo from wikipedia

In learning environments, understanding the longitudinal path of learning is one of the main goals. Cognitive diagnostic models (CDMs) for measurement combined with a transition model for mastery may be… Click to show full abstract

In learning environments, understanding the longitudinal path of learning is one of the main goals. Cognitive diagnostic models (CDMs) for measurement combined with a transition model for mastery may be beneficial for providing fine-grained information about students’ knowledge profiles over time. An efficient algorithm to estimate model parameters would augment the practicality of this combination. In this study, the Expectation–Maximization (EM) algorithm is presented for the estimation of student learning trajectories with the GDINA (generalized deterministic inputs, noisy, “and” gate) and some of its submodels for the measurement component, and a first-order Markov model for learning transitions is implemented. A simulation study is conducted to investigate the efficiency of the algorithm in estimation accuracy of student and model parameters under several factors—sample size, number of attributes, number of time points in a test, and complexity of the measurement model. Attribute- and vector-level agreement rates as well as the root mean square error rates of the model parameters are investigated. In addition, the computer run times for converging are recorded. The result shows that for a majority of the conditions, the accuracy rates of the parameters are quite promising in conjunction with relatively short computation times. Only for the conditions with relatively low sample sizes and high numbers of attributes, the computation time increases with a reduction parameter recovery rate. An application using spatial reasoning data is given. Based on the Bayesian information criterion (BIC), the model fit analysis shows that the DINA (deterministic inputs, noisy, “and” gate) model is preferable to the GDINA with these data.

Keywords: estimation; model parameters; first order; order learning; model

Journal Title: Applied Psychological Measurement
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.