LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian Item Response Theory Models With Flexible Generalized Logit Links

Photo by cdc from unsplash

In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within… Click to show full abstract

In educational and psychological research, the logit and probit links are often used to fit the binary item response data. The appropriateness and importance of the choice of links within the item response theory (IRT) framework has not been investigated yet. In this paper, we present a family of IRT models with generalized logit links, which include the traditional logistic and normal ogive models as special cases. This family of models are flexible enough not only to adjust the item characteristic curve tail probability by two shape parameters but also to allow us to fit the same link or different links to different items within the IRT model framework. In addition, the proposed models are implemented in the Stan software to sample from the posterior distributions. Using readily available Stan outputs, the four Bayesian model selection criteria are computed for guiding the choice of the links within the IRT model framework. Extensive simulation studies are conducted to examine the empirical performance of the proposed models and the model fittings in terms of “in-sample” and “out-of-sample” predictions based on the deviance. Finally, a detailed analysis of the real reading assessment data is carried out to illustrate the proposed methodology.

Keywords: generalized logit; response theory; item; item response; logit links

Journal Title: Applied Psychological Measurement
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.