As the use of digital techniques in toxicologic pathology expands, challenges of scalability and interoperability come to the fore. Proprietary formats and closed single-vendor platforms prevail but depend on the… Click to show full abstract
As the use of digital techniques in toxicologic pathology expands, challenges of scalability and interoperability come to the fore. Proprietary formats and closed single-vendor platforms prevail but depend on the availability and maintenance of multiformat conversion libraries. Expedient for small deployments, this is not sustainable at an industrial scale. Primarily known as a standard for radiology, the Digital Imaging and Communications in Medicine (DICOM) standard has been evolving to support other specialties since its inception, to become the single ubiquitous standard throughout medical imaging. The adoption of DICOM for whole slide imaging (WSI) has been sluggish. Prospects for widespread commercially viable clinical use of digital pathology change the incentives. Connectathons using DICOM have demonstrated its feasibility for WSI and virtual microscopy. Adoption of DICOM for digital and computational pathology will allow the reuse of enterprise-wide infrastructure for storage, security, and business continuity. The DICOM embedded metadata allows detached files to remain useful. Bright-field and multichannel fluorescence, Z-stacks, cytology, and sparse and fully tiled encoding are supported. External terminologies and standard compression schemes are supported. Color consistency is defined using International Color Consortium profiles. The DICOM files can be dual personality Tagged Image File Format (TIFF) for legacy support. Annotations for computational pathology results can be encoded.
               
Click one of the above tabs to view related content.