LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differentiation of benign and malignant spinal schwannoma using guided attention inference networks on multi-source MRI: comparison with radiomics method and radiologist-based clinical assessment

Background Differentiating diagnosis between the benign schwannoma and the malignant counterparts merely by neuroimaging is not always clear and remains still confounding in many cases because of atypical imaging presentation… Click to show full abstract

Background Differentiating diagnosis between the benign schwannoma and the malignant counterparts merely by neuroimaging is not always clear and remains still confounding in many cases because of atypical imaging presentation encountered in clinic and the lack of specific diagnostic markers. Purpose To construct and validate a novel deep learning model based on multi-source magnetic resonance imaging (MRI) in automatically differentiating malignant spinal schwannoma from benign. Material and Methods We retrospectively reviewed MRI imaging data from 119 patients with the initial diagnosis of benign or malignant spinal schwannoma confirmed by postoperative pathology. A novel convolutional neural network (CNN)-based deep learning model named GAIN-CP (Guided Attention Inference Network with Clinical Priors) was constructed. An ablation study for the fivefold cross-validation and cross-source experiments were conducted to validate the novel model. The diagnosis performance among our GAIN-CP model, the conventional radiomics model, and the radiologist-based clinical assessment were compared using the area under the receiver operating characteristic curve (AUC) and balanced accuracy (BAC). Results The AUC score of the proposed GAIN method is 0.83, which outperforms the radiomics method (0.65) and the evaluations from the radiologists (0.67). By incorporating both the image data and the clinical prior features, our GAIN-CP achieves an AUC score of 0.95. The GAIN-CP also achieves the best performance on fivefold cross-validation and cross-source experiments. Conclusion The novel GAIN-CP method can successfully classify malignant spinal schwannoma from benign cases using the provided multi-source MR images exhibiting good prospect in clinical diagnosis.

Keywords: schwannoma; multi source; malignant spinal; spinal schwannoma; source; benign

Journal Title: Acta Radiologica
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.