The objectives of this study were to describe the anatomy, histology, and ultrastructure of the equine filum terminale (FT) and to describe the FT in hereditary equine regional dermal asthenia… Click to show full abstract
The objectives of this study were to describe the anatomy, histology, and ultrastructure of the equine filum terminale (FT) and to describe the FT in hereditary equine regional dermal asthenia (HERDA), a model of human Ehlers-Danlos syndromes (EDS). Those humans suffer from tethered cord syndrome (TCS) caused by an abnormally structured FT wherein its attachment at the base of the vertebral column leads to long-term stretch-induced injury to the spinal cord. The pathophysiology of TCS in EDS is poorly understood, and there is a need for an animal model of the condition. Histopathologic and ultrastructural examinations were performed on FT from HERDA (n = 4) and control horses (n = 5) and were compared to FT from human TCS patients with and without EDS. Adipose, fibrous tissue, and neuronal elements were assessed. CD3 and CD20 immunohistochemistry was performed to clarify cell types (HERDA n = 2; control n = 5). Collagen fibrils were assessed in cross-section for fibril diameter and shape, and in longitudinal section for fibril disorganization, swelling, and fragmentation. The equine and human FT were similar, with both containing fibrous tissue, ependyma, neuropil, and nerve twigs. Hypervascularity was observed in both HERDA horses and human EDS-TCS patients and was not observed in equine or human controls. Moderate to severe abnormalities in collagen fibril orientation and architecture were observed in all HERDA horses and were similar to those observed in human EDS-TCS patients.
               
Click one of the above tabs to view related content.