This paper presents a framework for multiphysics modeling of a novel type of multifunctional composite material, structured on microscale, with ability to function as battery cell in addition to carry… Click to show full abstract
This paper presents a framework for multiphysics modeling of a novel type of multifunctional composite material, structured on microscale, with ability to function as battery cell in addition to carry mechanical load. The micro-battery consists of a single carbon fiber surrounded by very thin solid electrolyte coating and embedded in a matrix which is a porous material containing active particles able to intercalate lithium. During battery operation (discharging and charging) the structural battery constituents undergo volume changes, caused by lithium-ion movement. The presented mathematical model is solved numerically using COMSOL software and results are used to analyze the physical phenomena occurring in the structural battery material. Parametric analysis is performed to reveal the significance of geometrical parameters like fiber volume fraction in the battery and the porosity content in the matrix on the multifunctional performance of the composite unit including its swelling/shrinking during charging/discharging.
               
Click one of the above tabs to view related content.