We investigated the effect of conceptual transparency in the physical structure of manipulatives on place-value understanding in typically developing children and those at risk for mathematics learning disabilities. Second graders… Click to show full abstract
We investigated the effect of conceptual transparency in the physical structure of manipulatives on place-value understanding in typically developing children and those at risk for mathematics learning disabilities. Second graders were randomly assigned to one of three manipulatives conditions: (a) attachable beads that did not make the denominations or ones in the denominations transparent, (b) pipe cleaners that made only the denominations transparent, and (c) string beads that made both the denominations and the ones in the denominations transparent. Participants used the manipulatives to represent double- and triple-digit numerals. Statistical analyses indicated that the transparency of the denominations, but not the transparency of the ones in the denominations, is responsible for children’s number representation and place-value understanding. Descriptive analyses of their responses revealed that the at-risk children were at a greater disadvantage than their typically developing peers with the attachable beads, failing to use place-value concepts to interpret their representations.
               
Click one of the above tabs to view related content.