LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Renal ultrastructural damage induced by chronic exposure to copper oxide nanomaterials: Electron microscopy study

Photo by nichtraucherinitiative from unsplash

Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the… Click to show full abstract

Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the renal ultrastructural damage caused by 25 nm CuO nanoparticles in renal tissues. Adult healthy male Wister Albino rats (Rattus norvegicus) were administered 35 intraperitoneal injections of CuO nanoparticles (2 mg/kg). Ultrastructural changes were evaluated using transmission electron microscopy techniques. The renal tissues of rats with subchronic exposure to CuO nanoparticles demonstrated glomerular alterations that included hypertrophic endothelial cells, dilated capillaries and occlusions, podocyte hypertrophy, pedicle disorganization, mesangial cell hyperplasia, and crystalloid precipitation. Moreover, the treated renal cells exhibited mitochondrial swelling and crystolysis, cytoplasmic vacoulization, lysosomal hypertrophy, apoptotic activity, endoplasmic reticulum dilatation, nuclear deformity, chromatin dissolution, and basement membrane thickening. In addition, disruption and disorganization of the renal cells microvilli together with cystolic inclusions were also detected. It was concluded from the present findings that CuO nanoparticles could interact with the components of the renal tissues in ways that could cause ultrastructural injury, suggesting renal tissue pathophysiology. Additional studies are suggested for a better understanding the nanotoxicity of CuO nanomaterials.

Keywords: cuo nanoparticles; ultrastructural damage; microscopy; oxide nanomaterials; renal ultrastructural; copper oxide

Journal Title: Toxicology and Industrial Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.