LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrospun bio-nano hybrid scaffold from collagen, Nigella sativa, and chitosan for skin tissue engineering application

Photo from wikipedia

The new sophisticated tissue engineering focused on producing nanocomposite with different morphologies for rapid tissue regeneration. In this case, utilizing nanotechnology with the incorporation of bio-based materials have achieved the… Click to show full abstract

The new sophisticated tissue engineering focused on producing nanocomposite with different morphologies for rapid tissue regeneration. In this case, utilizing nanotechnology with the incorporation of bio-based materials have achieved the interest of researchers. This research aims at developing hybrid bio-nano scaffold with collagen (Col), Nigella sativa (Ns), and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Field emission electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), moisture management properties, tensile properties, antibacterial activity, and wound healing assessment of the fabricated hybrid bio-nano scaffolds were employed to investigate the different properties of hybrid bio-nano scaffolds. The results exhibit that the sample with Col (50%) and Ns (25%), Cs (25%) has good fiber formation with a mean diameter of 381 ± 22 nm. This bio-nano scaffold has a porosity of 78 ± 6.9% and a fast absorbing-slow drying nature for providing a moist environment. The antibacterial zones of inhibition (ZOI) against Staphylococcus aureus and Escherichia coli were 10 ± 1.3 and 8 ± 0.9 mm respectively, and appeared to be adequate to inhibit bacterial action. The wound healing assessment states that 84 ± 3.8% of wound closure occurs in just 10 days, which is quicker (1.5 times) than the duration of a commercial bandage. All of the findings suggest that the bio-nano scaffold could be useful for skin tissue engineering.

Keywords: tissue engineering; tissue; bio nano

Journal Title: Journal of Bioactive and Compatible Polymers
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.