Biomaterial surface topography plays a vital role in the osteointegration of implants by regulating the early cell responses and tissue growth-in. However, most of the previous researches focused on the… Click to show full abstract
Biomaterial surface topography plays a vital role in the osteointegration of implants by regulating the early cell responses and tissue growth-in. However, most of the previous researches focused on the effects of osteogenic cells, only a little is known about the immune cells which dominate osteogenesis after implanting. In this paper, patterned titanium coatings were fabricated and the effects of surface topography on the macrophage behaviors were investigated. On patterned titanium surface, macrophages preferred to polarize to M2, while macrophages on traditional titanium coatings presented higher M1 polarization. Nearly 70% higher expression of anti-inflammatory genes, including interleukin-4, interleukin-10, interleukin-1ra, and arginase, were detected on the patterned titanium coatings. While the pro-inflammatory genes, such as interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and inducible nitric oxide synthase were notably depressed. Up-regulation of the osteoinductive cytokines were also detected on the patterned coatings, which indicated advantageous osteogenic microenvironment provided by macrophages. Immunomodulation effect on osteogenesis was also investigated in this study. Stimulated with RAW cells/patterned coatings conditioned medium, bone marrow stem cells presented nearly 1.5 fold higher expression of osteogenic genes and more mineralization nodules than the traditional sprayed Ti coatings. All these results suggested that modulating materials with a patterned surface might be a valuable strategy to endow the implants with favorable osteoimmunomodulatory properties.
               
Click one of the above tabs to view related content.