LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-functional magnetic nanoparticles as an effective drug carrier for the controlled anti-tumor treatment

Photo by schluditsch from unsplash

Because of the complications and mutability of cancers, combination of chemotherapy and other therapy with multi-mechanisms would be a bright future for the treatment of cancer. Thus, development of multi-functional… Click to show full abstract

Because of the complications and mutability of cancers, combination of chemotherapy and other therapy with multi-mechanisms would be a bright future for the treatment of cancer. Thus, development of multi-functional tumor-targeted drug delivery systems with two or more than two functions should be of great significance. In the study, the Fe3O4@C nanoparticles linked with thermoresponsive copolymer (MTC-NPs) were synthesized, after that, the magnetic properties and photothermal effects of MTC NPs were evaluated. Compared to the pure water, MTC-NPs absorbed more energy and transform it into heat under the 808 nm laser irradiation, and the temperature could increase over 60℃. In addition, the grafted copolymer with coil-to-globule transition acts as a gatekeeper for the temperature-controlled release of mitoxantrone molecules. The super paramagnetic behavior of MTC-NPs certified by the hysteresis loop gives a negligible coercivity at room temperature. Both in vitro and in vivo studies confirmed that the synergistic combination of magnetic targeting, drug controlled release, and thermochemotherapy improve the anti-tumor efficacy with lower side effects. This nanoparticle is a great potential drug carrier in anti-tumor drugs, which can improve the effect of hyperthermia, increase target distribution in tumor, and enhance curative effect for tumor while reducing normal tissue toxicity.

Keywords: drug carrier; drug; multi functional; anti tumor; mtc nps; tumor

Journal Title: Journal of Biomaterials Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.