LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of decellularized liver matrix-modified chitosan fibrous scaffold for C3A hepatocyte culture

Photo by danielcgold from unsplash

Hepatocyte scaffold is an essential part in bioartificial liver device. We have designed a novel hepatocyte scaffold based on porcine liver extracellular matrix (ECM) and chitosan (CTS) fabrics. This CTS-ECM… Click to show full abstract

Hepatocyte scaffold is an essential part in bioartificial liver device. We have designed a novel hepatocyte scaffold based on porcine liver extracellular matrix (ECM) and chitosan (CTS) fabrics. This CTS-ECM scaffold can improve cell adhesion and proliferation. In the present study, an orthogonal test was designed to optimize the CTS/ECM composite scaffold, in which ECM concentration, EDC concentration and EDC to NHS ratio were taken as factors, proportion of nitrogen element and hydroxyproline content as indicators. The cytocompatibility of the novel scaffold for C3A hepatocytes was analyzed in vitro. The orthogonal test demonstrated that the optimal scaffold should be based on ECM concentration of 5 mg/mL, EDC concentration of 5 mg/mL, and EDC to NHS ratio 1:1. C3A hepatocytes cultured on the optimized CTS-ECM scaffolds showed stronger proliferation and functionality than those on Cytodex3 microcarriers (p < 0.05). The CTS/ECM composite scaffold may be widely used as a promising hepatocyte culture carrier, especially in bioartificial liver support systems.

Keywords: c3a; cts ecm; scaffold; concentration edc; scaffold c3a; hepatocyte culture

Journal Title: Journal of Biomaterials Applications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.