Biodegradable films from hydroxypropyl distarch phosphate (HPDSP)/poly(vinyl alcohol) (PVA) and cationic starch/PVA blends were obtained by extrusion blowing at ratios of 100:0, 95:5, 90:10, 85:15, and 80:20. The morphology, X-ray… Click to show full abstract
Biodegradable films from hydroxypropyl distarch phosphate (HPDSP)/poly(vinyl alcohol) (PVA) and cationic starch/PVA blends were obtained by extrusion blowing at ratios of 100:0, 95:5, 90:10, 85:15, and 80:20. The morphology, X-ray patterns, transparency, mechanical properties, thermal properties, and water vapor permeability (WVP) of the films were measured and compared. Scanning electron microscopic micrographs of the films showed continuous matrix texture as well as better compatibility between modified starches and PVA. X-Ray diffraction indicated the formation of ordered crystalline structures in the films during extrusion blowing. The addition of PVA to modified starches significantly increased their tensile strength (TS, 3.92 MPa) while decreasing their water vapor permeability (WVP, 3.23 × 10−10 g m−1 s−1 Pa−1). The starch/PVA composite films did not show phase separation.
               
Click one of the above tabs to view related content.