LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An experimental study on interfacial fracture toughness of 3-D printed ABS/CF-PLA composite under mode I, II, and mixed-mode loading

Photo from wikipedia

Multimaterial structures made using fused deposition modeling (FDM) offer an attractive prospect for enhancing their mechanical properties and functionality. In this study, the interfacial fracture toughness of a unidirectional hybrid… Click to show full abstract

Multimaterial structures made using fused deposition modeling (FDM) offer an attractive prospect for enhancing their mechanical properties and functionality. In this study, the interfacial fracture toughness of a unidirectional hybrid composite fabricated by FDM was studied through mechanical testing. The composite structure comprises acrylonitrile butadiene styrene and carbon fiber-reinforced polylactic acid. Since, de-adhesion or bond failure at the interface can occur under a combination of the different fracture modes, therefore, interfacial fracture toughness, in terms of the critical energy release rate, was characterized using double cantilever beam specimen test for mode I, end-notched flexural specimen test for mode II, and mixed-mode bending specimen test for mixed-mode I/II. Effects of varying process parameters, like printing speed and nozzle temperature, on the interfacial fracture toughness in mode I and II were also investigated. It was found that increasing the nozzle temperature and printing speed enhance the fracture toughness, both in mode I and II, but the effect of increasing nozzle temperature on mode II fracture toughness was quite significant.

Keywords: mixed mode; mode; fracture; interfacial fracture; fracture toughness

Journal Title: Journal of Thermoplastic Composite Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.