LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MWCNT-reinforced polyarylene ether nitrile nanocomposites

Photo by shapelined from unsplash

In this study, we investigated the effect of surface roughness of acidulated multi-walled carbon nanotube (MWCNT) on the physical performances of MWCNT/polyarylene ether nitrile (MWCNT/PEN) nanocomposites. Acidulated MWCNTs with different… Click to show full abstract

In this study, we investigated the effect of surface roughness of acidulated multi-walled carbon nanotube (MWCNT) on the physical performances of MWCNT/polyarylene ether nitrile (MWCNT/PEN) nanocomposites. Acidulated MWCNTs with different surface roughnesses were prepared by ultrasonicating and refluxing of MWCNTs in the mixture solvent of sulfuric acid/nitric acid and characterized by atomic force microscopy. With longer acidulating time, more and more oxygen functional groups including carboxyl and hydroxyl groups which result in the coarser surface of the obtained MWCNT, were generated. MWCNT/PEN composites were fabricated by using the solution-casting method with the acidulated MWCNTs and PEN. SEM observation showed that the acidulated MWCNTs are well-embedded in the polymer matrix without aggregation. differential scanning calorimetry and thermogravimetric analysis results showed that the incorporation of acidulated MWCNTs can improve the thermal behavior of the resulted polymer composites. The coarser the surface of the acidulated MWCNT, the better the mechanical performances of the obtained composites, while opposite results were observed for the dielectric properties of the nanocomposites. The dynamical rheological results showed that a better compatibility between the MWCNT and PEN is achieved when the coarser MWCNT is used.

Keywords: ether nitrile; surface; polyarylene ether; mwcnt pen; acidulated mwcnts

Journal Title: High Performance Polymers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.