Rapid decay of photoanode, leakage from sealant, and evaporation of electrolyte are always the major concerns of quantum dot-sensitized solar cells (QDSCs) based on liquid electrolyte. Subsequently, gel polymer electrolyte… Click to show full abstract
Rapid decay of photoanode, leakage from sealant, and evaporation of electrolyte are always the major concerns of quantum dot-sensitized solar cells (QDSCs) based on liquid electrolyte. Subsequently, gel polymer electrolyte (GPE) appears as an attractive solution in addition to lower cost, lighter weight, and flexibility. Poly(acrylamide-co-acrylic acid) (PAAm-PAA) is of special interest to act as a polymer host to entrap liquid electrolyte because it provides high transparency, good gelatinizing properties, and excellent compatibility with the liquid electrolyte. In this work, the electrical and transport properties of PAAm-PAA GPE incorporating with water-soluble sodium sulfide were characterized by impedance spectroscopy. An increment of ionic conductivity was observed with the incorporation of ethylene carbonate (EC) and potassium chloride (KCl). The highest room temperature ionic conductivity of PAAm-PAA GPE is 70.82 mS·cm−1. QDSC based on PAAm-PAA GPE with the composition of 1.3 wt% of KCl, 0.9 wt% of EC, 55.3 wt% of PAAm-PAA, 38.5 wt% of sodium sulfide, and 4.0 wt% of sulfur can present up to 1.80% of light-to-electricity conversion efficiency.
               
Click one of the above tabs to view related content.