LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PVDF promotes TiO2 dispersion to obtain composite films with high dielectric constant and low loss

Photo from wikipedia

A series of three-phase composite films with different filler contents were prepared by in-situ polymerization. The composite films comprise polyimide (PI), poly (vinylidene fluoride) (PVDF), and titanium dioxide (TiO2). Compared… Click to show full abstract

A series of three-phase composite films with different filler contents were prepared by in-situ polymerization. The composite films comprise polyimide (PI), poly (vinylidene fluoride) (PVDF), and titanium dioxide (TiO2). Compared with PI/TiO2 composite films, the PI/TiO2-PVDF composite films not only get a significant increase in dielectric constant, but also own better mechanical properties. Our results show that with the loading of 50wt% PVDF particles, the dielectric constant of PI/TiO2-PVDF composite films increased from 6.5 to 18.14 at 1 MHz and room temperature, while the tensile strength of PI/TiO2-PVDF composite films increased from 45 to 72 MPa. In addition, the films maintain a low loss tangent of about 0.02. PI/PVDF composite films were also prepared. It was found that dielectric constant of PI/PVDF composite was significantly lower than that of PI/TiO2-PVDF composite films when the loading of PVDF is 50wt%.

Keywords: low loss; dielectric constant; pvdf composite; pvdf; tio2 pvdf; composite films

Journal Title: High Performance Polymers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.