Tolerance analysis represents the best way to solve assembly problems in order to improve the quality and to reduce the costs. It is a critical step to design and to… Click to show full abstract
Tolerance analysis represents the best way to solve assembly problems in order to improve the quality and to reduce the costs. It is a critical step to design and to build a product such as an aircraft and its importance is grown up in the past years. This work presents a method for the tolerance analysis of an assembly involving free-form surfaces with large dimensions. The assembly is a tail beam, a structural component of an aircraft that is constituted by five parts of large dimensions. The influence of the tolerances applied to the five components of the tail beam on the value of the gap at the interfaces among the parts has been deeply investigated. A set of control points have been distributed on the free-form surfaces of the tail beam; its number and its distribution have been opportunely designed. Moreover, the influence of the tolerances on the other requirements of the tail beam connected with the motion drive has been studied. Tolerance analysis has involved the choice of the assembly tools and sequence too. The assembly jigs are mated with the assembly components through pins that are inserted into tooling holes located on the assembly components. The fit conditions have been modeled and the tolerances of the tooling hole have been opportunely chosen. Each tolerance of the tail beam components has been modeled by means of a probability density function. Monte Carlo approach has been used to obtain the statistical distribution of the assembly requirements, once dimensions and geometry of the tail beam components have been perturbed inside the tolerance ranges. Monte Carlo simulation has been carried out by a well-known computer-aided tolerance software, eM-Tolmate of UGSĀ®.
               
Click one of the above tabs to view related content.