LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An investigation on formation of burrs during milling of aluminium alloy under wet condition

Photo from wikipedia

Undesirable burrs are created out of a machining process. The objective of the present work is to explore the suitable condition to obtain no burr, or negligible burr, around the… Click to show full abstract

Undesirable burrs are created out of a machining process. The objective of the present work is to explore the suitable condition to obtain no burr, or negligible burr, around the edge of a machined product at wet condition. Face milling experiments have been carried out on blocks made of aluminum alloy (Alloy-4600M) with a single, coated-carbide inserted cutter for observing the nature of burr formation. Depth of cut has been maintained constant at 3 mm for all sets of experiments. In each experiment set, three cutting velocities (170 m/min, 237 m/min and 339 m/min) and three in-plane exit angles of 30°, 60° and 90° are provided at three different feeds of 0.08 mm/tooth, 0.1 mm/tooth and 0.12 mm/tooth. First set of experiments are done without any exit edge bevel. Similar sets of experiments are carried out with 15° and 30° exit edge bevel angles to find out the condition for minimum burr. The bevel is made of a height of 3 mm. In the present experimental investigation, a minimum burr height of as low as 3 micron is obtained at an in-plane exit angle of 30° and exit edge bevel angle of 15° under the machining condition of 339 m/min cutting velocity and 0.1 mm/tooth feed.

Keywords: condition; edge; wet condition; burr; exit

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.