LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of temperature on milling stability of thin-walled parts

Photo from wikipedia

Milling, as a common machining method, is widely used in rough machining and final finishing of various materials. In this paper, according to the milling temperature produced in the milling… Click to show full abstract

Milling, as a common machining method, is widely used in rough machining and final finishing of various materials. In this paper, according to the milling temperature produced in the milling process, the formula of heat distribution coefficient for workpiece milling is established. By means of Deform-3D finite element software to carry out orthogonal cutting simulation of workpiece, the influence of different machining parameters on milling heat distribution coefficient is studied, the optimal machining parameters are determined, and the milling temperature experiment is carried out to verify the simulation temperature. The experimental results show that the simulation temperature is very close to the experimental workpiece temperature, and the error is very small, which verifies the accuracy of the method. At the same time, the influence of different initial temperature of workpiece on the milling force and stability is also studied. The results show that proper heating of the workpiece can effectively improve the milling stability of the thin-walled parts.

Keywords: milling stability; walled parts; temperature; stability thin; thin walled; stability

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.