The traditional load-sensing hydraulic system is an energy-saving fluid power transmission, which supply “on-demand” flow at a prescribed pressure margin greater than the highest load pressure of the system. In… Click to show full abstract
The traditional load-sensing hydraulic system is an energy-saving fluid power transmission, which supply “on-demand” flow at a prescribed pressure margin greater than the highest load pressure of the system. In this paper, a novel load-sensing system that has a variable pressure margin through overriding differential pressure control via integrating an electro-proportional three-way type pressure reducing valve into the hydro-mechanical load-sensing valve is proposed. Also, a bond graph model taking into account the dynamic characteristics of load-sensing valve and load-sensing path is constructed, and three group experiments are performed to verify the validation of the model. Based on the bond graph model, a series of theoretical simulations are carried out to prove that the proposed Load-Sensing system enables a satisfactory balance between energy efficiency and rapid dynamic response over a wide range of operating conditions. In addition, due to overriding differential pressure control, mode selection and power limit regulation can also be achieved.
               
Click one of the above tabs to view related content.