LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of flexure hinges based on stress-constrained topology optimization

Photo by elisa_ventur from unsplash

Stress concentration is one of the disadvantages of flexure hinges. It limits the range of motion and reduces the fatigue life of mechanisms. This article designs flexure hinges by using… Click to show full abstract

Stress concentration is one of the disadvantages of flexure hinges. It limits the range of motion and reduces the fatigue life of mechanisms. This article designs flexure hinges by using stress-constrained topology optimization. A weighted-sum method is used for converting the multi-objective topology optimization of flexure hinges into a single-objective problem. The objective function is presented by considering the compliance factors of flexure hinges in the desired and other directions. The stress constraint and other constraint conditions are developed. An adaptive normalization of the P-norm of the effective von Mises stresses is adopted to approximate the maximum stress, and a global stress measure is used to control the stress level of flexure hinges. Several numerical examples are performed to indicate the validity of the method. The stress levels of flexure hinges without and with stress constraints are compared. In addition, the effects of mesh refinement and output spring stiffness on the topology results are investigated. The stress constraint effectively eliminates the sharp corners and reduces the stress concentration.

Keywords: topology; topology optimization; stress; flexure hinges

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.