LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stiffness characteristics of inner–outer ring flexure pivots applied to the ultra-precision instruments

Photo from wikipedia

The inner-outer ring flexure pivot (IORFP), composed of three straight springs that cross each other in space, is studied in this work. First, to emphasize the study value of IORFP,… Click to show full abstract

The inner-outer ring flexure pivot (IORFP), composed of three straight springs that cross each other in space, is studied in this work. First, to emphasize the study value of IORFP, qualitative comparison is applied to IORFP and some of most commonly used flexure pivots. Then an analytical model for the rotational stiffness of IORFP is developed based on the strain energy formulation of a beam flexure, and model applicability is provided as well. Analysis of stiffness, buckling load, and the nonlinear of moment–rotation relation is then carried out. Subsequently, the analytical model is verified by finite element analysis. After that, seven prototypes of IORFP are manufactured, and their rotational stiffnesses are tested. The results show that the analytical model can be used for analysis and designing of compliant mechanisms that contain IORFP. Finally, the study quantitatively compares stiffness characteristics and axis drift of IORFP and the generalized cross-spring pivot, indicating that the former significantly outperforms the latter. IORFP possesses excellent performances and can be widely used to supplant generalized cross-spring pivot in compliant mechanisms and ultra-precision instruments.

Keywords: outer ring; flexure pivots; ring flexure; stiffness characteristics; inner outer; flexure

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.