LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iterative learning control with complex conjugate gradient optimization algorithm for multiaxial road durability test rig

Service load replication performed on multiaxial hydraulic test rigs has been widely applied in automotive engineering for durability testing in laboratory. The frequency-domain off-line iterative learning control is used to… Click to show full abstract

Service load replication performed on multiaxial hydraulic test rigs has been widely applied in automotive engineering for durability testing in laboratory. The frequency-domain off-line iterative learning control is used to generate the desired drive file, i.e. the input signals which drive the actuators of the test rig. During the iterations an experimentally identified linear frequency-domain system model is used. As the durability test rig and the specimen under test have a strong nonlinear behavior, a large number of iterations are needed to generate the drive file. This process will cause premature deterioration to the specimen unavoidably. In order to accelerate drive file construction, a method embedding complex conjugate gradient algorithm into the conventional off-line iterative learning control is proposed to reproduce the loading conditions. The basic principle and monotone convergence of the method is presented. The drive signal is updated according to the complex conjugate gradient and the optimal learning gain. An optimal learning gain can be obtained by an estimate loop. Finally, simulations are carried out based on the identified parameter model of a real spindle-coupled multiaxial test rig. With real-life spindle forces from the wheel force transducer in the proving ground test to be replicated, the simulation results indicate that the proposed conventional off-line iterative learning control with complex conjugate gradient algorithm allows generation of drive file more rapidly and precisely compared with the state-of-the-art off-line iterative learning control. Few have been done about the proposed method before. The new method is not limited to the durability testing and can be extended to other systems where repetitive tracking task is required.

Keywords: iterative learning; complex conjugate; test rig; learning control

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.