LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-material topology optimization of compliant mechanisms via solid isotropic material with penalization approach and alternating active phase algorithm

Photo from wikipedia

The present study aims at providing a topology optimization of multi-material compliant mechanisms using solid isotropic material with penalization (SIMP) approach. In this respect, three multi-material gripper, invertor, and cruncher… Click to show full abstract

The present study aims at providing a topology optimization of multi-material compliant mechanisms using solid isotropic material with penalization (SIMP) approach. In this respect, three multi-material gripper, invertor, and cruncher compliant mechanisms are considered that consist of three solid phases, including polyamide, polyethylene terephthalate, and polypropylene. The alternating active-phase algorithm is employed to find the distribution of the materials in the mechanism. In this case, the multiphase topology optimization problem is divided into a series of binary phase topology optimization sub-problems to be solved partially in a sequential manner. Finally, the maximum displacement of the multi-material compliant mechanisms was validated against the results obtained from the finite element simulations by the ANSYS Workbench software, and a close agreement between the results was observed. The results reveal the capability of the SIMP method to accurately conduct the topology optimization of multi-material compliant mechanisms.

Keywords: compliant mechanisms; topology; topology optimization; multi material

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.