LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear superharmonic resonance analysis of a nonlocal beam on a fractional visco-Pasternak foundation

Photo by iamhiteshdewasi from unsplash

This paper investigates the dynamic behavior of a geometrically nonlinear nanobeam resting on the fractional visco-Pasternak foundation and subjected to dynamic axial and transverse loads. The fractional-order governing equation of… Click to show full abstract

This paper investigates the dynamic behavior of a geometrically nonlinear nanobeam resting on the fractional visco-Pasternak foundation and subjected to dynamic axial and transverse loads. The fractional-order governing equation of the system is derived and then discretized by using the single-mode Galerkin discretization. Corresponding forced Mathieu-Duffing equation is solved by using the perturbation multiple time scales method for the weak nonlinearity and by the semi-numerical incremental harmonic balance method for the strongly nonlinear case. A comparison of the results from two methods is performed in the validation study for the weakly nonlinear case and a fine agreement is achieved. A parametric study is performed and the advantages and deficiencies of each method are discussed for order two and three superharmonic resonance conditions. The results demonstrate a significant influence of the fractional-order damping of the visco-Pasternak foundation as well as the nonlocal parameter and external excitation load on the frequency response of the system. The proposed methodology can be used in pre-design procedures of novel energy harvesting and sensor devices at small scales exhibiting nonlinear dynamic behavior.

Keywords: visco pasternak; fractional visco; pasternak foundation

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.