LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on balanced self-weight of horizontal link heavy duty servo cylinder

Photo from wikipedia

In this article, the horizontal hinged heavy duty servo cylinder is taken as the research object. In the actual working process, while the servo hydraulic cylinder outputs the curve force,… Click to show full abstract

In this article, the horizontal hinged heavy duty servo cylinder is taken as the research object. In the actual working process, while the servo hydraulic cylinder outputs the curve force, the cylinder body will also rotate with the hinge point to a certain extent. Because the position of the center of gravity is constantly changing, and the weight of the cylinder body is too large, the friction causes damage to the sealing structure and seriously affects the working efficiency of the equipment. In order to improve the sealing performance of the servo hydraulic cylinder, a corresponding study is carried out. Firstly, the working angle interval of servo cylinder is optimized to ensure that the friction is the least in this range. Based on this, a new supporting structure is proposed, in which a small hydraulic cylinder is installed at the bottom of the servo hydraulic cylinder body. By controlling the output force of the small hydraulic cylinder, the cylinder body and piston rod are aligned all the time. The servo cylinder body is flexibly processed to more realistically see the adverse effect of the friction, and the co-simulation method using MSC.ADAMS and MATLAB/Simulink verifies the new support structure to improve the sealing performance. According to the simulation results and experiment results, and combined with the deformation curve of the hydraulic cylinder, when the maximum displacement is 336 mm, the maximum rotation angle is 15.6°, the friction is the smallest, about 5801.9 N. It is known from the experiment results that after adding the new support structure, the frictional force is reduced to 1365.9 N, which reduces the friction of nearly 76.5%.

Keywords: cylinder body; heavy duty; cylinder; servo cylinder; hydraulic cylinder

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.