In this paper, a novel sliding mode controller which requires partial state feedback is proposed for double-pendulum overhead cranes subject to unknown payload parameters and unknown external disturbances. Firstly, it… Click to show full abstract
In this paper, a novel sliding mode controller which requires partial state feedback is proposed for double-pendulum overhead cranes subject to unknown payload parameters and unknown external disturbances. Firstly, it is theoretically proved that the hook and payload tend to their respective equilibrium points concurrently. Secondly, a decoupling transformation is performed on the original nonlinear dynamics of double-pendulum overhead cranes. The novel sliding mode controller that does not require the prior information and motion signals of the payload is designed based on the decoupled nonlinear dynamics. Then, the asymptotic stability of the equilibrium point of double-pendulum overhead cranes is proved by rigorous analysis. Finally, several simulations are conducted to validate the effectiveness and robustness of the proposed controller.
               
Click one of the above tabs to view related content.