LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical analysis and experimental research on the accuracy decay of a ball screw with geometric errors under non-constant operating conditions

Photo by dawson2406 from unsplash

The ball screw (BS) has become an indispensable key functional component in many fields, such as precision manufacturing equipment and intelligent manufacturing production lines. Inevitable geometric errors and non-constant operating… Click to show full abstract

The ball screw (BS) has become an indispensable key functional component in many fields, such as precision manufacturing equipment and intelligent manufacturing production lines. Inevitable geometric errors and non-constant operating conditions affect the accuracy decay of the BS component. In this paper, a numerical analysis method of this accuracy decay with geometric parameters errors, under non-constant operating conditions, is established. The accuracy degradation of the BS, under a single non-constant operation condition or multiple non-constant operating conditions, is analyzed, using a proposed numerical analysis method. The average value of the relative error between numerical analysis and theoretical model results was 5.52%, 5.66%, and 5.40%, under the three operating conditions of non-constant rotation rate (RR), non-constant contact load (CL), and non-constant rotation rate and contact load (RR + CL), respectively. And the maximum relative error value was 11.11%, 11.11%, and 10.98%. In addition, the numerical analysis method of BS accuracy degradation was compared to experimental tests. The average value of the relative error between numerical analysis outcome and experimental tests was 7.07%, 6.08%, 6.56%, and the maximum relative error value was 11.11%, 14.29%, and 13.04% under the three operating conditions of RR, CL, and RR + CL, respectively.

Keywords: constant operating; accuracy; numerical analysis; non constant; operating conditions

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.