LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minimum time optimal control simulation of a GP2 race car

Photo from wikipedia

In this work, optimal control theory is applied to minimum lap time simulation of a GP2 car, using a multibody car model with enhanced load transfer dynamics. The mathematical multibody… Click to show full abstract

In this work, optimal control theory is applied to minimum lap time simulation of a GP2 car, using a multibody car model with enhanced load transfer dynamics. The mathematical multibody model is formulated with use of the symbolic algebra software MBSymba and it comprises 14 degrees of freedom, including full chassis motion, suspension travels and wheel spins. The kinematics of the suspension is exhaustively analysed and the impact of tyre longitudinal and lateral forces in determining vehicle trim is demonstrated. An indirect optimal control method is then used to solve the minimum lap time problem. Simulation outcomes are compared with experimental data acquired during a qualifying lap at Montmeló circuit (Barcelona) in the 2012 GP2 season. Results demonstrate the reliability of the model, suggesting it can be used to optimise car settings (such as gearing and aerodynamic setup) before executing track tests.

Keywords: gp2; time; simulation; car; optimal control

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.