LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New hybrid NSGA-III&SPEA/R to multi-object optimization in a half-car dynamic model

Photo by rednala from unsplash

In this article, we conducted a new hybrid method between Non-dominated Sorting Genetic Algorithm II (NSGA-III) and SPEA/R (HNSGA-III&SPEA/R). This method is implemented to find the optimal values of the… Click to show full abstract

In this article, we conducted a new hybrid method between Non-dominated Sorting Genetic Algorithm II (NSGA-III) and SPEA/R (HNSGA-III&SPEA/R). This method is implemented to find the optimal values of the powertrain mount system stiffness parameters. This is the task of finding multi-objective optimization involving six simultaneous optimization goals: mean square acceleration and mean square displacement of the powertrain mount system. A hybrid HNSGA-III&SPEA/R has proposed with the integration of Strength Pareto evolutionary algorithm-based reference direction for Multi-objective (SPEA/R) and Many-objective optimization genetic algorithm (NSGA-III). Several benchmark functions are tested, and results reveal that the HNSGA-III&SPEA/R is more efficient than the typical SPEA/R and NSGA-III. Powertrain mount system stiffness parameters optimization with HNSGA-III&SPEA/R is simulated. It proved the potential of the HNSGA-III&SPEA/R for powertrain mount system stiffness parameter optimization problem.

Keywords: iii; hnsga iii; optimization; nsga iii; spea; iii spea

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.