LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steering control to balance a motorcycle at low speeds based on riders’ input

Photo from wikipedia

Motorcycles are a primary mode of daily transportation in many developing countries, especially in towns and cities. The increased traffic congestion constrains the average speed of the motorcycle, causing stability… Click to show full abstract

Motorcycles are a primary mode of daily transportation in many developing countries, especially in towns and cities. The increased traffic congestion constrains the average speed of the motorcycle, causing stability and safety concerns for the riders. A controller that assists the riders can improve this scenario. This paper presents a new controller developed using an experimental study that improves the low-speed stability of a motorcycle. The experiments were conducted on a motorcycle with the riders of three experience levels: beginner, intermediate and expert. The input parameters: steering angle and steering torque; the output parameters: roll angle, yaw angle, roll rate and yaw rate were measured. Critical input and output parameters were identified statistically from the experimental measurements and used for the controller modelled in Simulink. The controller model was co-simulated with a multi-body dynamics model of the motorcycle. The co-simulation results showed the controller developed herein stabilises the motorcycle model at low speeds.

Keywords: steering control; motorcycle; controller; control balance; balance motorcycle; low speeds

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.