LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Super-twisting algorithm with fast super-twisting disturbance observer for steer-by-wire vehicles

Photo by springwellion from unsplash

The control performance of a vehicle steer-by-wire (SBW) system can be seriously affected by vagaries of tyre-road conditions and external disturbance. Aiming at the problem of fast estimating and compensating… Click to show full abstract

The control performance of a vehicle steer-by-wire (SBW) system can be seriously affected by vagaries of tyre-road conditions and external disturbance. Aiming at the problem of fast estimating and compensating the time-varying disturbance torque acting on the front wheels under different working conditions, this article presents a super-twisting algorithm (STA) combined with fast super-twisting disturbance observer (FSTDO) control scheme. At first the SBW system is modelled according to the experiment plant. Secondly, the FSTDO is designed according to SBW system model. A fast reaching law is adopted to accelerate the sliding variable convergence rate and enhance the response speed of the observer. The FSTDO-STA controller adopts STA control in closed-loop system. The control signal is continuous, so that, the chattering could be inhibited. The stability of FSTDO error dynamics and closed-loop dynamics is proved in the sense of Lyapunov. Finally, comparative verification experiments are carried out to demonstrate the validity of FSTDO-STA. The FSTDO-STA controller can quickly estimate and compensate disturbance torque under various operating conditions. Compared with other comparative algorithms, the proposed controller has some advantages in response speed, control accuracy and robustness. And it was corroborated by the experimental results.

Keywords: twisting disturbance; steer wire; fast super; super twisting; disturbance; twisting algorithm

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.