LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-triggered control of vehicle platoon under deception attacks

Photo from wikipedia

This paper addresses the issue of control of a vehicle platoon system with limited on-board energy and communication resources and subjected to cyber-physical attacks. A platoon model for the predecessor-leader… Click to show full abstract

This paper addresses the issue of control of a vehicle platoon system with limited on-board energy and communication resources and subjected to cyber-physical attacks. A platoon model for the predecessor-leader following topology under the effect of cyber-attack and time-varying delay is developed. A stochastic type deception attack is considered in this paper at the sensor-controller end of a vehicle. The probability of occurrence of attack is represented using a random variable. In addition, to reduce the usage of resources in a system, a decentralized event-triggering communication mechanism is proposed where each vehicle can decide independently on when to transmit its state to the controller. Further, the criteria for co-designing of control law and triggering parameter ensuring internal stability of the platoon system is developed based on the proposed triggering mechanism. A condition to achieve string stability for the controller is also obtained. Further, to avoid the problem of Zeno phenomena, a lower bound on the transmission period is presented. The effectiveness of the proposed methodology is established through simulation example.

Keywords: deception; control; vehicle; vehicle platoon; control vehicle

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.