LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of lid height and blowing ratio on film cooling effectiveness of a novel lidded hole configuration

Photo from wikipedia

Film cooling is one of the promising technologies used for protecting rocket nozzles and turbine blades from combustion chamber hot gases. This paper proposes a novel shape of film cooling… Click to show full abstract

Film cooling is one of the promising technologies used for protecting rocket nozzles and turbine blades from combustion chamber hot gases. This paper proposes a novel shape of film cooling injection hole, called lidded hole, that can offer significant enhancement of cooling performance. ANSYS CFX is used to perform 3D numerical simulations of a flat plate with a single row of lidded holes, in which the k–ε model approximates turbulence effects. Four cases are investigated to highlight the influence of the hole's lid height (H/d = 0, 0.25, 0.5, 0.75). The effect of blowing ratios (M = 0.5, 1, 1.5) is also analyzed for each configuration. The numerical results of this study are compared with available experimental data, and, generally, a good agreement is achieved. The results obtained show that the lidded hole configuration reduces the coolant flow separation which improves significantly the film cooling effectiveness. In addition, increasing the blowing ratio leads to an increase in lateral and centerline cooling effectiveness. Comparing all studied cases, the optimum coolant coverage was obtained for the lidded hole configuration with H/d = 0.25 at M = 1.5.

Keywords: lidded hole; cooling effectiveness; hole configuration; film cooling

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.