LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wear behavior of high volume Al2O3-reinforced Al7075 matrix composites fabricated by semi-solid powder processing

Photo from wikipedia

The aim of the present study is to fabricate high volume Al2O3-reinforced Al7075 matrix composite by semi-solid powder processing method as an effective method to achieve the desired wear properties.… Click to show full abstract

The aim of the present study is to fabricate high volume Al2O3-reinforced Al7075 matrix composite by semi-solid powder processing method as an effective method to achieve the desired wear properties. The alloy powder (20 µm) was mixed with Al2O3 (120 µm) for 10 min and 5 h by planetary ball mill to overcome the powders agglomeration. The wear behavior of the composites was studied using the pin-on-disk tribometer. The effects of milling time, compact pressure, and reinforcement content were investigated to enhance the wear resistance. The results of the tribotests indicated that composites with coarser reinforcing particles (lower milling time) have good wear resistance. The role of compaction pressure in highly loaded composites is remarkable. The maximum wear resistance was observed for the 50% Al2O3 composite. The wear resistance increased as the reinforcement volume increased before reaching a critical value. Abrasive wear is the predominant mechanism in the wear of reinforced composites containing less than the load limit. However, adhesive and laminating wear are the controlling mechanisms at overloads. The results indicate valuable information in the development of aluminum-based composites.

Keywords: wear; volume al2o3; al2o3 reinforced; high volume; volume; powder

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.