LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mean-variance model for optimization of the timetable in urban rail transit systems

Photo from wikipedia

Regenerative braking is an energy-efficient technology that converts kinetic energy to electrical energy during braking phases. For more efficient recovered energy utilization, the stochastic cooperative scheduling approach has been proposed… Click to show full abstract

Regenerative braking is an energy-efficient technology that converts kinetic energy to electrical energy during braking phases. For more efficient recovered energy utilization, the stochastic cooperative scheduling approach has been proposed for determining the dwell times at stations, wherein the accelerating trains can use the energy recovered from the adjacent braking trains as much as possible. Here, running times at the sections are considered as random variables with given probability functions. In this paper, the authors develop a data-driven stochastic cooperative scheduling approach in which the real data of the speed of trains are recorded and used in the place of motion equations. First, the authors formulate a stochastic mean-variance model, which maximizes the expected utilization and minimizes the variance of the quantity of the recovered energy. Second, a genetic algorithm that utilizes particle swarm optimization has been designed to find the optimal dwell times at stations. Finally, numerical examples are presented based on the real-life operational data from Beijing Yizhuang urban rail transit line in China. The results illustrate that the real-life operational data in the data-driven stochastic cooperative scheduling approach can provide a more accurate description about the movement of trains, which would result in more efficient energy saving, i.e. by 1.66%, in comparison with the stochastic cooperative scheduling approach. Most importantly, the data-driven stochastic cooperative scheduling approach results in lower variance by 68.69% and higher robustness.

Keywords: cooperative scheduling; energy; scheduling approach; variance; stochastic cooperative

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.