LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved dynamic load-strength interference model for the reliability analysis of aero-engine rotor blade system

Photo from wikipedia

As the power source of an aircraft, aero-engine tends to meet many rigorous requirements for high thrust-weight ratio and reliability with the continuous improvement of aero-engine performance. In this paper,… Click to show full abstract

As the power source of an aircraft, aero-engine tends to meet many rigorous requirements for high thrust-weight ratio and reliability with the continuous improvement of aero-engine performance. In this paper, based on the order statistics and stochastic process theory, an improved dynamic load-strength interference (LSI) model was proposed for the reliability analysis of aero-engine rotor blade system, with strength degradation and catastrophic failure involved. In presented model, the “unconventional active” characteristic of rotor blade system, changeable functioning relationships and system-component configurations, was fully considered, which is necessary for both theoretical analysis and engineering application. In addition, to reduce the computation cost, a simplified form of the improved LSI model was also built for convenience of engineering application. To verify the effectiveness of the improved model, reliability of turbojet 7 engine rotor blade system was calculated by the improved LSI model based on the results of static finite element analysis. Compared with the traditional LSI model, the result showed that there were significant differences between the calculation results of the two models, in which the improved model was more appropriate to the practical condition.

Keywords: engine; aero engine; model; blade system; rotor blade

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.