This study is mainly focusing on the problem of spacecraft close-range proximity with obstacle avoidance in the presence of complex shape. A novel Gaussian mixture model–based nonsingular terminal sliding mode… Click to show full abstract
This study is mainly focusing on the problem of spacecraft close-range proximity with obstacle avoidance in the presence of complex shape. A novel Gaussian mixture model–based nonsingular terminal sliding mode control (GMM-NTSMC) is proposed. This is achieved by developing GMM-based potential function with a switching surface of NTSMC. It is theoretically proved that the closed-loop system is globally stable. The main contribution of this study is that the GMM-based avoiding strategies, which include the GMM-based terminal sliding mode control (GMM-TSMC) and GMM-NTSMC, can solve the collision avoidance problem considering complex shape while the artificial potential function–based terminal sliding model control (APF-TSMC) fails. Moreover, the GMM-NTSMC and the GMM-TSMC require less energy with respect to the APF-TSMC. Furthermore, the GMM-NTSMC retains the advantage of the NTSMC and can avoid singularity problem while GMM-TSMC cannot. Finally, numerical simulations are performed to verify the effectiveness and superiority of the proposed GMM-NTSMC.
               
Click one of the above tabs to view related content.