LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Gaussian mixture model based nonsingular terminal sliding mode control for spacecraft close-range proximity with complex shape obstacle

Photo by theian20 from unsplash

This study is mainly focusing on the problem of spacecraft close-range proximity with obstacle avoidance in the presence of complex shape. A novel Gaussian mixture model–based nonsingular terminal sliding mode… Click to show full abstract

This study is mainly focusing on the problem of spacecraft close-range proximity with obstacle avoidance in the presence of complex shape. A novel Gaussian mixture model–based nonsingular terminal sliding mode control (GMM-NTSMC) is proposed. This is achieved by developing GMM-based potential function with a switching surface of NTSMC. It is theoretically proved that the closed-loop system is globally stable. The main contribution of this study is that the GMM-based avoiding strategies, which include the GMM-based terminal sliding mode control (GMM-TSMC) and GMM-NTSMC, can solve the collision avoidance problem considering complex shape while the artificial potential function–based terminal sliding model control (APF-TSMC) fails. Moreover, the GMM-NTSMC and the GMM-TSMC require less energy with respect to the APF-TSMC. Furthermore, the GMM-NTSMC retains the advantage of the NTSMC and can avoid singularity problem while GMM-TSMC cannot. Finally, numerical simulations are performed to verify the effectiveness and superiority of the proposed GMM-NTSMC.

Keywords: sliding mode; gmm; terminal sliding; complex shape; mode control

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.