LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-phase and dual aero/propulsive rocket landing guidance using successive convex programming

Photo by homajob from unsplash

This paper aims to suggest a new landing guidance algorithm for reusable launch vehicles (RLVs) to enable generation of fuel-efficient trajectories based on successive convex programming. To this end, a… Click to show full abstract

This paper aims to suggest a new landing guidance algorithm for reusable launch vehicles (RLVs) to enable generation of fuel-efficient trajectories based on successive convex programming. To this end, a dual aero/propulsive landing guidance problem is first formulated to fully exploit the additional moment generated by the aerodynamic control to reduce the propulsion demand required for attitude control. As the result of the aerodynamic landing phase could greatly affect the fuel-optimal trajectory during the vertical landing phase, the formulation is further extended to the multi-phase optimal guidance problem using state-triggered constraints. The proposed guidance strategy is then obtained by solving the formulated optimal control problem based on the successive convex optimization framework using an interior point method The main contribution of this study lies in forming new RLV landing guidance problems to get an optimal trajectory and transforming the corresponding nonconvex problem into a convex optimization problem by introducing appropriate combinations for convexification techniques. Additionally, this paper introduces several practical constraints, such as the maximum slew rate of aerodynamic control fins and nozzle angles, which are not considered in previous works. In this paper, the performance of the proposed method with the potential for online computation is investigated through numerical simulations.

Keywords: problem; landing guidance; guidance; phase; successive convex

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.