LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A detailed analysis of the unsteady flow within a Wells turbine

Photo from wikipedia

Sea wave energy is one of the main renewable energy resources. Its exploitation is relatively simple and determines a minimum impact on the environment. The system that is most often… Click to show full abstract

Sea wave energy is one of the main renewable energy resources. Its exploitation is relatively simple and determines a minimum impact on the environment. The system that is most often used for wave energy harvesting is composed of an oscillating water column device together with a Wells turbine. When designing the Wells turbine, its interaction with the oscillating water column system must be taken into account, if the energy collected is to be maximized. The most important interaction phenomenon is the so called hysteresis effect, i.e. the time delay between the piston-like motion of the air water interface and the torque developed by the turbine. This work presents a detailed analysis of the flow within an oscillating water column system, focusing on the differences in performance and in secondary flow structures between acceleration and deceleration, and between the inflow and outflow phases. This analysis demonstrates how the hysteresis between acceleration and deceleration is caused uniquely by compressibility effects within the oscillating water column system, while differences in the flow parameters and secondary structures near the rotor are negligible, if equivalent flow conditions are compared. The effects of the oscillating water column system configuration on the performance are also highlighted.

Keywords: wells turbine; energy; water; oscillating water; water column; flow

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.