LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade

Photo by martindorsch from unsplash

In the current study, the effects of micro-vortex generators on the flow characteristics of a high-load compressor cascade are investigated, and four types of micro-vortex generators including “rectangular,” “curved rectangular,”… Click to show full abstract

In the current study, the effects of micro-vortex generators on the flow characteristics of a high-load compressor cascade are investigated, and four types of micro-vortex generators including “rectangular,” “curved rectangular,” “trapezoidal,” and “curved trapezoidal” are considered and named VGR, VGCR, VGT, and VGCT separately. The calculated results show that a rising reverse flow region, which is considered a main reason for occurring stall at +8° incidence, collapses rapidly from the leading edge in the cascade. Therefore, the micro-vortex generators are all mounted on the end-wall in front of the passage to suppress the development of the secondary flow, and the stall occurrence is delayed from +8° to +11° incidence by applying VGCT. At the design condition, the VGT can make the total pressure loss decrease by 0.54%. The modified micro-vortex generators show an obvious superiority when the range of incidence is between +3° and +8°. At the stall condition, the VGCT can make the total pressure loss decrease by 9.36%. Moreover, the reduction of the secondary flow loss is considered a main goal of the adoption of micro-vortex generators which is an achievement for decreasing the total pressure loss, and the highest reduction of the secondary flow loss reaches 34.6% at the stall condition in the cascade with VGCT.

Keywords: load compressor; high load; micro vortex; cascade; vortex generators; loss

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.