LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of radial inflow distortion on the performance of a highly loaded tandem stage

Photo from wikipedia

Engine size and weight optimization have always been high-priority design objectives for designers. Compressors occupy a relatively large part of the gas turbine engine. Owing to the adverse pressure gradient… Click to show full abstract

Engine size and weight optimization have always been high-priority design objectives for designers. Compressors occupy a relatively large part of the gas turbine engine. Owing to the adverse pressure gradient in the compressor, achieving the required pressure ratio within fewer stages has been a challenging task for compressor designers. Tandem blading is one of the novel concepts, which could be used to increase the pressure ratio by means of higher flow turning through the blade passages. This paper presents the performance characteristics of a tandem stage based on results from experiments and numerical analyses. The investigation is further extended to analyze the effect of a radial hub and tip distortion on the performance of the tandem stage. The experimental results are very well supported with some interesting numerical results, particularly near the hub and tip region. It is observed that the tandem stage demonstrates higher pressure rise and stall margin under clean inflow. The tandem stage is also observed to be more sensitive to radial distortion leading to a significant loss in the total pressure and the stall margin.

Keywords: tandem stage; effect radial; distortion; performance; stage; pressure

Journal Title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.